

Power-Stud+™ SD4 and Power-Stud+ SD6

Stainless Steel Wedge Expansion Anchors

PRODUCT DESCRIPTION

The Power-Stud+ SD4 and Power-Stud+ SD6 anchors are fully threaded, torque-controlled, stainless steel wedge expansion anchors which are designed for consistent performance in cracked and uncracked concrete. Suitable base materials are normal-weight and sandlightweight concrete. The anchor is manufactured with a stainless steel body and expansion clip. Nut and washer are included.

PRODUCT INFORMATION

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments
- Interior and exterior applications
- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers

FEATURES AND BENEFITS

- + Knurled mandrel design provides consistent performance in cracked concrete and helps prevent galling during service life.
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading
- + Category 1 corrosion resistant stainless steel anchors
- + Domestically manufactured by request, call for details

APPROVALS AND LISTINGS

International Code Council Evaluation Service (ICC-ES), ESR-3471 for cracked and uncracked concrete (3/8" and 1/2" diameter anchor)

Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (Strength Design method using Appendix D)

GUIDE SPECIFICATIONS

CSI Divisions: 031600-Concrete Anchors, 05090-Metal Fastenings and 050519 Post-installed concrete anchors. Expansion anchors shall be Power-Stud+ SD4 and Power-Stud+ SD6 as supplied by Powers Fasteners, Inc., Brewster, NY. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anahar sammanant	Specif	Specification							
Anchor component	SD4 ^{1,2}	SD6 ²							
Anchor body	Type 304 Stainless Steel	Type 316 Stainless Steel							
Washer	300 Series Stainless Steel	Type 316 Stainless Steel							
Hex Nut	Type 316 St	ainless Steel							
Expansion wedge (clip)	Type 316 St	Type 316 Stainless Steel							

- 1. Anchors manufactured with Type 303 Stainless Steel are available upon request (see ordering information for Power-Stud+ SD3), and are equivalent to Type 304 Stainless Steel anchors.
- 2. Domestically manufactured anchors (as produced in the USA) are available upon request (see ordering information) and are assembled with foreign and domestic components.

SECTION CONTENTS	Page No.
General Information	1
Material Specifications	1
Installation Instructions	2
ASD Installation Specifica	ations 2
Reference Performance D	ata 3
ASD Design Criteria	4
Strength Design Informat	tion6
SD Performance Data	9
Ordering Information	10

Power-Stud+ Stainless Steel Assembly

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

Stainless steel body and expansion clip, nut and washer

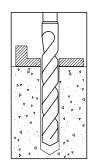
ANCHOR SIZE RANGE (TYP.)

1/4" diameter through 5/8" diameter

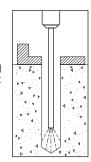
SUITABLE BASE MATERIALS

Normal-weight concrete Sand-lightweight concrete

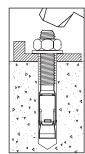
This Product Available In

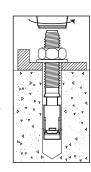


Powers Design Assist Real Time Anchor Design Software www.powersdesignassist.com



INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Stud+ SD4 and Power-Stud+ SD6


1.) Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

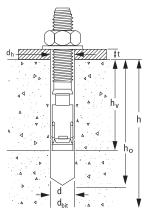
2.) Remove dust and debris from the hole using a hand pump, compressed air or a vacuum to remove loose particles left from drilling.

3.) Position the supplied washer on the anchor and thread on the supplied nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth.

4.) Tighten the anchor with a torque wrench by applying the required installation torque, $T_{inst.}$

Allowable Stress Design (ASD) Installation Table for Power-Stud+ SD4 and Power-Stud+ SD6

Anchor Property/Setting Information	Notation	Units	Nominal Anchor Diameter (inch)						
Anction Property/Setting information	Notation	Oilles	1/4	3/8	1/2	5/8			
Anchor outside diameter	d	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)			
Nominal drill bit diameter	d _{bit}	in.	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/8 ANSI			
Minimum diameter of hole clearance in fixture	d_h	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	11/16 (17.5)			
Minimum embedment depth	h_{v}	in. (mm)	1-3/4 (44)	1-7/8 (48)	2-1/2 (64)	3-1/4 (83)			
Minimum hole depth	h _o	in. (mm)	1-7/8 (48)	2 (51)	2-5/8 (67)	3-1/2 (89)			
Installation torque	T _{inst}	ftlbf. (N-m)	6 (8)	25 (34)	40 (54)	60 (81)			
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/16			
Nut height	-	in.	7/32	21/64	7/16	35/64			


For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

Length Identification

Mark	А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	P	Q	R
From	1-1/2"	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"
Up to but not including	2"	2-1/2"	3"	3-1/2"	4"	4-1/2"	5"	5-1/2"	6"	6-1/2"	7"	7-1/2"	8"	8-1/2"	9"	9-1/2	10"	11"

Length identification mark indicates overall length of anchor.

ASD Installation Detail

Nomenclature

d = Diameter of anchor

 d_{bit} = Diameter of drill bit

 $d_h = Diameter of fixture clearance hole$

h = Base material thickness The minimum value of h should be 1.5h_v or 3" whichever is greater

 $h_v = Minimum embedment depth$

t = Fixture thickness

Head Marking

Legend

Letter Code = Length Identification Mark

1.1 Comball Channello Decima Compliant An

'+' Symbol = Strength Design Compliant Anchor (see ordering information, symbol not on 1/4" diameter anchors)

Number Code = Stainless Steel Body Type (3, 4 or 6)

_

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 in Normal-Weight Concrete^{1,2}

					Minimum	Concrete Comp	ressive Strengt	h - f'c (psi)				
Nominal	Nominal Minimum		2,500 psi		3,000 psi		4,000 psi		6,000 psi		0 psi	
Anchor Diameter (in.)	Embedment Depth (in.)	Ultimate Tension Load Capacity (lbs.)	Ultimate Shear Load Capacity (lbs.)									
1/4	1-3/4	1,890	2,135	2,070	2,135	2,390	2,135	2,480	2,135	2,480	2,135	
3/8	1-7/8	2,790	2,745	3,060	2,745	3,530	2,745	4,195	2,745	4,840	2,745	
1/2	2-3/8	5,370	5,090	5,880	5,090	6,185	5,090	6,790	5,090	7,845	5,090	
5/8	3-1/4	6,760	9,230	7,405	9,230	8,550	9,230	9,615	9,230	11,105	9,230	

PRODUCT INFORMATION

Allowable Load Capacities for Power-Stud+ SD4 and Power-Stud+ SD6 in Normal-Weight Concrete^{1,2,3}

					Minimum (Concrete Comp	ressive Streng	th - f'c (psi)			
Nominal Minimum		2,500 psi		3,000 psi		4,000 psi		6,000 psi		8,000 psi	
Anchor Diameter (in.)	Embedment Depth (in.)	Allowable Tension Load Capacity (lbs.)	Allowable Shear Load Capacity (lbs.)								
1/4	1-3/4	470	535	520	535	600	535	620	535	620	535
3/8	1-7/8	700	685	765	685	885	685	1,050	685	1,210	685
1/2	2-3/8	1,345	1,270	1,470	1,270	1,545	1,270	1,700	1,270	1,960	1,270
5/8	3-1/4	1,690	2,310	1,850	2,310	2,140	2,310	2,405	2,310	2,775	2,310

^{1.} Tabulated load values are for anchors installed in uncracked concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

3

^{1.} Tabulated load values are for anchors installed in uncracked concrete with no edge or spacing considerations. Concrete compressive strength must be at the specified minimum at the time of installation.

^{2.} Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working loads.

^{2.} Allowable load capacities listed are calculated using and applied safety factor of 4.0.

^{3.} Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERIA

Spacing Distance and Edge Distance Adjustment Factors for Normal Weight Concrete - Tension (F_{NS} , F_{NC})

Canada: (905) 673-7295 or (514) 631-4216

	Spacing Redu	ıction Facto	ors - Tensio	on (F _{NS})	
Diamet	er d (in)	1/4	3/8	1/2	5/8
Critical Spa	acing s _{cr} (in)	4-1/2	5-1/2	6	8-1/4
Minimum Sp (Reduced And	acing s _{min} (in) chor Capacity)	2	5-1/2	4-1/2	5
Min. Slab Thic	kness h _{min} (in)	3-1/4	3-1/4	4	5
Minimum Emb	edment h _v (in)	1-3/4	1-7/8	2-3/8	3-1/4
	1-3/4	-	-	-	-
	2	0.79	-	-	-
	2-1/4	0.81	-	-	-
	2-1/2	0.83	-	-	-
	2-3/4 0.85 -		-	-	
	3	0.87	-	-	-
Spacing Distance (inches)	3-1/2	0.91	-	-	-
e (in	4	0.96			-
stanc	4-1/2	1.00	-	0.91	-
ng Di	5	1.00	-	0.94	0.85
paci	5-1/2	1.00	1.00	0.97	0.87
, ,	6	1.00	1.00	1.00	0.90
6-1/2		1.00	1.00	1.00	0.92
7		1.00	1.00	1.00	0.94
7-1/2		1.00	1.00	1.00	0.97
	8	1.00	1.00	1.00	0.99
	8-1/4	1.00	1.00	1.00	1.00

	Edge Distance Red	uction Facto	ors- Tension	(F _{NC})	
Diamet	er d (in)	1/4	3/8	1/2	5/8
Critical Dis	tance c _{cr} (in)	5	5	7 1/2	9 1/2
Minimum Edge Distance c _{min} (in) (Reduced Anchor Capacity)		1-3/4	3	6	8-1/2
Min. Slab Thio	kness h _{min} (in)	3-1/4	3-1/4	4	5
Minimum Emb	pedment h _v (in)	1-3/4	1-7/8	2-3/8	3-1/4
	1-1/2	-	-	-	-
	1-3/4	0.37	-	-	-
	2	0.41	-	-	-
	2-1/4	0.45	-	-	-
	2-1/2	0.50	-	-	-
	2-3/4	0.55	-	-	-
	3	0.60	0.60	-	-
· ·	3-1/2	0.70	0.70	-	-
uches	4	0.80	0.80	-	-
Edge Distance (inches)	4-1/2	0.90	0.90	-	-
Distar	5	1.00	1.00	-	-
dge [5-1/2	1.00	1.00	-	-
_ <u>~</u>	6	1.00	1.00	0.80	-
	6-1/2	1.00	1.00	0.87	-
	7	1.00	1.00	0.93	-
	7-1/2		1.00	1.00	-
8		1.00	1.00	1.00	-
8-1/2		1.00	1.00	1.00	0.89
	9	1.00	1.00	1.00	0.95
	9-1/2	1.00	1.00	1.00	1.00

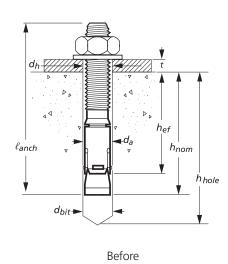
ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERIA

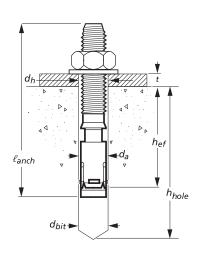
Spacing Distance and Edge Distance Adjustment Factors for Normal Weight Concrete -Shear (F_{VS} , F_{VC})

Spacing Reduction Factors - Shear (F _{vs})										
Diamet	1/4	3/8	1/2	5/8						
. ,		4-1/2	5-1/2	6	8-1/4					
Critical Spacing s _{cr} (in)		4-1/2	3-1/2	0	0-1/4					
(Reduced And	acing s _{min} (in) chor Capacity)	2	5-1/2	4-1/2	5					
Min. Slab Thio	kness h _{min} (in)	3-1/4	3-1/4	4	5					
Minimum Emb	pedment h _v (in)	1-3/4	1-7/8	2-3/8	3-1/4					
	1-3/4	-	-	-	-					
	2	0.87	-	-	-					
	2-1/4	0.88	-	-	-					
	2-1/2	0.90	-	-	-					
	2-3/4	0.91	-	-	-					
_	3	0.92	-	-	-					
ches)	3-1/2	0.95	-	-	-					
Spacing Distance (inches)	4	0.97	-	-	-					
stan	4-1/2	1.00	-	0.95	-					
ng Di	5	1.00	-	0.96	0.91					
Spaci	5-1/2	1.00	1.00	0.98	0.93					
•,	6	1.00	1.00	1.00	0.94					
	6-1/2	1.00	1.00	1.00	0.95					
	7		1.00	1.00	0.97					
	7-1/2	1.00	1.00	1.00	0.98					
	8	1.00	1.00	1.00	0.99					
	8-1/4	1.00	1.00	1.00	1.00					

	Edge Distance	Poduction Fo	ctors - Shoor	/E \	
		1			
Diamet	er d (in)	1/4	3/8	1/2	5/8
Critical Dis	Critical Distance c _{cr} (in)		4-1/2	6	8-1/4
Minimum Dis (Reduced And	Minimum Distance c _{min} (in) (Reduced Anchor Capacity)		3	6	4-1/2
Min. Slab Thio	kness h _{min} (in)	3-1/4	3-1/4	4	5
Minimum Emb	pedment h _v (in)	1-3/4	1-7/8	2-3/8	3-1/4
	1-1/2	-	-	-	-
	1-3/4	0.39	-	-	-
	2	0.44	-	-	-
	2-1/4	0.50	-	-	-
	2-1/2	0.56	-	-	-
	2-3/4	0.61	-	-	-
<u> </u>	3	0.67	0.67	-	-
nche	3-1/2	0.78	0.78	-	-
ice (ii	4	0.89	0.89	-	-
Jistar	4-1/2	1.00	1.00	-	0.55
Edge Distance (inches)	5	1.00	1.00	-	0.61
<u> </u>	5-1/2	1.00	1.00	-	0.67
	6	1.00	1.00	1.00	0.73
	6-1/2	1.00	1.00	1.00	0.79
	7 7-1/2		1.00	1.00	0.85
			1.00	1.00	0.91
	8	1.00	1.00	1.00	0.97
	8-1/4	1.00	1.00	1.00	1.00

INSTALLATION SPECIFICATIONS


Strength Design Installation Table for Power-Stud+ SD4 and Power-Stud+ SD61



Analog Durant (Cathing Information	Notation	Units		No	minal Anchor Diame	ter	
Anchor Property/Setting Information	Notation	Units	1/4	3/8	1/2	5/	8
Anchor outside diameter	d _a	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.6 (15	
Minimum diameter of hole clearance in fixture	d _h	in. (mm)	5/16 (7.9)	7/16 (11.1)	9/16 (14.3)	11/ (17	
Nominal drill bit diameter	d _{bit}	in.	1/4 ANSI	3/8 ANSI	1/2 ANSI	5/ AN	
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	1-7/8 (48)	2-3/8 (60)	3-1 (8.	
Effective embedment	h _{ef}	in. (mm)	1.50 (38)	1.50 (38)	2.00 (51)	2.7	
Minimum hole depth	h _{hole}	in. (mm)	1-7/8 (48)	2 (51)	2-5/8 (67)	3-1 (8)	
Minimum member thickness	h _{min}	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)	(12	
Minimum overall anchor length	$oldsymbol{\ell}_{anch}$	in. (mm)	2-1/4 (57)	2-3/4 (70)	3-3/4 (95)	4-1 (11	
Minimum edge distance	C _{min}	in. (mm)	1-3/4 (44)	3 (76)	6 (152)	4-1/2 (114)	8-1/2 (216)
Minimum spacing distance	S _{min}	in. (mm)	2 (51)	5-1/2 (140)	4-1/2 (114)	8-1/2 (216)	5 (127)
Critical edge distance	C _{ac}	in. (mm)	5 (127)	5 (127)	7-1/2 (191)	9-1 (24	
Installation torque	T _{inst}	ftlbf. (N-m)	6 (8)	25 (34)	40 (54)	60 (81)	
Torque wrench/socket size	-	in.	7/16	9/16	3/4	15/	16
Nut height	-	in.	7/32	21/64	7/16	35/	64

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

Power-Stud+ SD4 and Power-Stud+ SD6 Anchor Detail

After

Application of Installation Torque

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

STRENGTH DESIGN INFORMATION

Tension Design Information for Power-Stud+ SD4 and Power-Stud+ SD6 Anchors in Concrete (For use with load combinations taken from ACI 318, Section 9.2)1-4

PRODUCT INFORMATION

					Nominal Anchor Diamete	er
Design Characteristic	Notation	Units	1/4	3/8	1/2	5/8
Anchor category	1,2 or 3	-	1	1	1	1
Nominal embedment depth	h _{nom}	in.	1-3/4	1-7/8	2-3/8	3-1/4
		STEEL ST	RENGTH IN TENSION4			
Minimum specified yield strength	f_y	ksi (N/mm²)	60 (414)	60 (414)	60 (414)	60 (414)
Minimum specified ultimate tensile strength (neck)	f _{uta} 10	ksi (N/mm²)	90 (621)	90 (621)	90 (621)	90 (621)
Effective tensile stress area (neck)	A_{se}	in² (mm²)	0.0249 (16.1)	0.053 (34.2)	0.102 (65.8)	0.163 (105.2)
Steel strength in tension	N _{sa} ¹⁰	lb (kN)	2,240 (10)	4,780 (21)	9,160 (41)	14,635 (65)
Reduction factor for steel strength ³	φ	-		0.	.75	
	CON	CRETE BREA	KOUT STRENGTH IN TEN	ISION ⁸		
Effective embedment	h _{ef}	in. (mm)	1-1/2 (38)	1-1/2 (38)	2 (51)	2-3/4 (70)
Effectiveness factor for uncracked concrete	k _{uncr}	-	24	24	30	24
Effectiveness factor for cracked concrete	k _{cr}	-	Not Applicable	21	21	21
Modification factor for cracked and uncracked concrete ⁵	$\psi_{c,N}{}^{\scriptscriptstyle 10}$	-	Not Applicable	1	1	1
Critical edge distance (uncracked concrete only)	C _{ac}	in. (mm)	5 (127)	5 (127)	7-1/2 (191)	9-1/2 (241)
Reduction factor for concrete breakout strength ³	φ	-		0.65 (Co	ndition B)	
F	PULLOUT STR	ENGTH IN TE	ENSION (NON-SEISMIC A	APPLICATIONS)8		
Characteristic pullout strength, uncracked concrete (2,500 psi) ⁶	N _{p,uncr}	lb (kN)	1,385 (6.2)	See Note ⁷	See Note ⁷	See Note ⁷
Characteristic pullout strength, cracked concrete (2,500 psi) ⁶	N _{p,cr}	lb (kN)	Not Applicable	1,645 (7.4)	See Note ⁷	See Note ⁷
Reduction factor for pullout strength ³	φ	-		0.65 (Co	ndition B)	
	PULLOUT ST	RENGTH IN T	ENSION FOR SEISMIC A	PPLICATIONS8		
Characteristic pullout strength, seismic (2,500 psi) ^{6,9}	N_{eq}^{10}	lb (kN)	Not Applicable	1,645 (7.4)	See Note ⁷	4,395 (19.6)
Reduction factor for pullout strength ³	φ	-		0.65 (Co	ndition B)	

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm^2 ; 1 lb = 0.0044 kN.

^{1.} The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.

^{2.} Installation must comply with published instructions and details.

^{3.} All values of ϕ apply to the load combinations of IBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that complies with ACI 318 Appendix D requirements for Condition A, the appropriate ϕ factor must be determined in accordance with ACI 318 D.4.4.

^{4.} The Power-Stud+ SD4 and Power-Stud+ SD6 are considered ductile steel elements as defined by ACI 318 D.1. Tabulated values for steel strength in tension must be used for design.

^{5.} For all design cases use $\psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used. 6. For all design cases use $\psi_{c,N} = 1.0$. For concrete compressive strength greater than 2,500 psi, $N_{pn} = (\text{pullout strength value from table})^*(\text{specified concrete strength/2500})^{0.5}$

^{7.} Pullout strength will not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

^{8.} Anchors are permitted to be used in structural sand-lightweight concrete provided that N_{br} N_{eq} and N_{pn} are multiplied by a factor of 0.60.

^{9.} Tabulated values for characteristic pullout strength in tension are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.5.

^{10.} For 2003 IBC, ϕ_{uta} replaces ϕ_{ut} ; N_{sa} replaces N_s ; $\psi_{c,N}$ replaces ψ_3 ; and N_{eq} replaces $N_{p,seis}$.

STRENGTH DESIGN INFORMATION

Shear Design Information for Power-Stud+ SD4 and Power-Stud+ SD6 Anchors in Concrete (For use with load combinations taken from ACI 318, Section 9.2)^{1,2}

Desires Characteristic	Netetien	Units	Nominal Anchor Diameter				
Design Characteristic	Notation	Offics	1/4	3/8	1/2	5/8	
Anchor category	1, 2 or 3	-	1	1	1	1	
Nominal embedment depth	h _{nom}	in.	1-3/4	1-7/8	2-3/8	3-1/4	
		STEEL STRE	NGTH IN SHEAR4				
Minimum specified yield strength (threads)	f_y	ksi (N/mm²)	60 (414)	60 (414)	60 (414)	60 (414)	
Minimum specified ultimate strength (threads)	f _{uta} ⁸	ksi (N/mm²)	90 (621)	90 (621)	90 (621)	90 (621)	
Effective tensile stress area (threads)	A_{se}	in² (mm²)	0.0318 (20.5)	0.078 (50.3)	0.142 (91.6)	0.226 (145.8)	
Steel strength in shear ⁵	V _{sa} ⁸	lb (kN)	1,115 (5.0)	1,470 (6.6)	3,170 (14.3)	7,455 (33.6)	
Reduction factor for steel strength ³	or steel strength 3 ϕ - 0.65						
	c	ONCRETE BREAKO	OUT STRENGTH IN SHEA	R ⁶			
Load bearing length of anchor (hef or 8do, whichever is less)	ℓ e ⁸	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	
Nominal anchor diameter	da	in. (mm)	0.250 (6.4)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	
Reduction factor for concrete breakout ³	φ	-	0.70 (Condition B)				
		CONCRETE PRYOU	T STRENGTH IN SHEAR	6			
Coefficient for pryout strength (1.0 for hef $<$ 2.5 in., 2.0 for hef \ge 2.5 in.)	k _{cp}	-	1	1	1	2	
Effective embedment	h _{ef}	in. (mm)	1.50 (38.1)	1.50 (38.1)	2.00 (50.8)	2.75 (69.9)	
Reduction factor for pryout strength ³	φ	-		0.70 (Coi	ndition B)		
	STEEL S	STRENGTH IN SHE	AR FOR SEISMIC APPLIC	ATIONS			
Steel strength in shear, seismic ⁷	V _{sa,seis}	lb (kN)	Not Applicable	1,305 (5.9)	2,765 (12.3)	5,240 (23.3)	
Reduction factor for steel strength in shear for seismic ³	φ	-	0.65				

For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm^2 ; 1 lb = 0.0044 kN.

Canada: (905) 673-7295 or (514) 631-4216

^{1.} The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.

^{2.} Installation must comply with published instructions and details.

^{3.} All values of ϕ apply to the load combinations of IBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that complies with ACI 318 Appendix D requirements for Condition A, the appropriate ϕ factor must be determined in accordance with ACI 318 D.4.4.

^{4.} The Power-Stud+ SD4 and Power-Stud+ SD6 are considered ductile steel elements as defined by ACI 318 D.1.

^{5.} Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation D-20 in ACI 318-05, ACI 318 D.6.1.2 and D-18 in ACI 318-02, D.6.1.2.

^{6.} Anchors are permitted to be used in structural sand-lightweight concrete provided that V_{br} and V_{cp} and V_{cpg} are multiplied by a factor of 0.60.

^{7.} Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6. 8. For the 2003 IBC f_{uta} replaces f_{ut} ; V_{sa} replaces V_{s} ; ℓ_{e} replaces ℓ_{e} .

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength ϕN_n and ϕV_n Calculated in accordance with ACI 318 Appendix D Compliant with the International Building Code

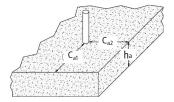
Tension and Shear Design Strengths for Power-Stud+ SD4 and Power-Stud+ SD6 in Cracked Concrete¹⁻⁶

		Minimum Concrete Compressive Strength, f'c (psi)									
Nominal Nominal Anchor Embed.	2,500		3,000		4,000		6,000		8,000		
Diameter (in.)	h _{nom} (in.)	φNn Tension (lbs.)	φVn Shear (lbs.)	φΝ _n Tension (lbs.)	φVn Shear (lbs.)	φΝ _n Tension (lbs.)	φVn Shear (lbs.)	φNn Tension (lbs.)	φVn Shear (lbs.)	φΝ _n Tension (lbs.)	φVn Shear (lbs.)
1/4	1-3/4	-	-	-	-	-	-	-	-	-	-
3/8	1-7/8	1,070	955	1,170	955	1,355	955	1,655	955	1,915	955
1/2	2-3/8	1,930	2,060	2,115	2,060	2,440	2,060	2,990	2,060	3,455	2,060
5/8	3-1/4	3,110	4,520	3,410	4,845	3,935	4,845	4,820	4,845	5,570	4,845

PRODUCT INFORMATION

Tension and Shear Design Strengths for Power-Stud+ SD4 and Power-Stud+ SD6 in Uncracked Concrete¹⁻⁶

		Minimum Concrete Compressive Strength, f'c (psi)									
Nominal Anchor	Nominal Embed.	2,5	500	3,0	000	4,0	000	6,0	00	8,0	00
Diameter (in.)	h _{nom} (in.)	φΝη Tension (lbs.)	φVn Shear (lbs.)	φNn Tension (lbs.)	φVn Shear (lbs.)	φΝ _n Tension (lbs.)	φVn Shear (lbs.)	φΝ _n Tension (lbs.)	φVn Shear (lbs.)	φΝ ⁿ Tension (lbs.)	φV ⁿ Shear (lbs.)
1/4	1-3/4	900	725	985	725	1,140	725	1,395	725	1,610	725
3/8	1-7/8	1,435	955	1,570	955	1,815	955	2,220	955	2,565	955
1/2	2-3/8	2,760	2,060	3,020	2,060	3,490	2,060	4,270	2,060	4,935	2,060
5/8	3-1/4	3,555	4,845	3,895	4,845	4,500	4,845	5,510	4,845	6,365	4,845


Legend

Steel Strength Controls

Concrete Breakout Strength Controls

Anchor Pullout/Pryout Strength Controls

- 1. Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight-concrete with minimum slab thickness, $h_{a}=h_{\text{min}}$, and with the following conditions:
 - C_{a1} is greater than or equal to the critical edge distance, C_{ac} (table values based on $C_{a1} = C_{ac}$).
 - C_{a2} is greater than or equal to 1.5 C_{a1}.
- 2. Calculations were performed according to ACI 318-08 Appendix D. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- 3. Strength reduction factors (\$\phi\$) were based on ACI 318 Section 9.2 for load combinations. Condition B is assumed.
- 4. Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D.
- 6. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see ACI 318 Appendix D.

9

ORDERING INFORMATION

Power-Stud+ SD4 (Type 304 Stainless Steel Body)

(Type 3	(Type 304 Stalliless Steel Body)							
Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.				
7300SD4	1/4" x 1-3/4"	3/4"	100	600				
7302SD4	1/4" x 2-1/4"	1-1/4"	100	600				
7304SD4	1/4" x 3-1/4"	2-1/4"	100	600				
7310SD4	3/8" x 2-1/4"	7/8"	50	300				
7312SD4	3/8" x 2-3/4"	1-3/8"	50	300				
7313SD4	3/8" x 3"	1-5/8"	50	300				
7314SD4	3/8" x 3-1/2"	2-1/8"	50	300				
7315SD4	3/8" x 3-3/4"	2-3/8"	50	300				
7316SD4	3/8" x 5"	3-5/8"	50	300				
7317SD4	3/8" x 7"	5-5/8"	50	300				
7320SD4	1/2" x 2-3/4"	1"	50	300				
7322SD4	1/2" x 3-3/4"	2"	50	300				
7323SD4	1/2" x 4-1/2"	2-3/4"	50	300				
7324SD4	1/2" x 5-1/2"	3-3/4"	50	300				
7326SD4	1/2" x 7"	5-1/4"	25	100				
7330SD4	5/8" x 3-1/2"	1-1/2"	25	100				
7332SD4	5/8" x 4-1/2"	2-1/2"	25	100				
7333SD4	5/8" x 5"	3"	25	100				
7334SD4	5/8" x 6"	4"	25	75				
7336SD4	5/8" x 7"	5"	25	75				
7338SD4	5/8" x 8-1/2"	6-1/2"	25	50				

Power-Stud+ SD3 (Type 303 Stainless Steel Body)

(Type 303 Stailliess Steel Bouy)							
Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.			
7310SD3	3/8" x 2-1/4"	7/8"	50	300			
7312SD3	3/8" x 2-3/4"	1-3/8"	50	300			
7313SD3	3/8" x 3"	1-5/8"	50	300			
7314SD3	3/8" x 3-1/2"	2-1/8"	50	300			
7315SD3	3/8" x 3-3/4"	2-3/8"	50	300			
7316SD3	3/8 " x 5"	3-5/8"	50	300			
7317SD3	3/8" x 7"	5-5/8"	50	300			
7320SD3	1/2" x 2-3/4"	1"	50	300			
7322SD3	1/2" x 3-3/4"	2"	50	300			
7323SD3	1/2" x 4-1/2"	2-3/4"	50	300			
7324SD3	1/2" x 5-1/2"	3-3/4"	50	300			
7326SD3	1/2" x 7"	5-1/4"	25	100			
7330SD3	5/8" x 3-1/2"	1-1/2"	25	100			
7332SD3	5/8" x 4-1/2"	2-1/2"	25	100			
7333SD3	5/8" x 5"	3"	25	100			
7334SD3	5/8" x 6"	4"	25	75			
7336SD3	5/8" x 7"	5"	25	75			
7338SD3	5/8" x 8-1/2"	6-1/2"	25	50			

Power-Stud+ SD3 anchors are available on request and can be domestically manufactured (produced in the USA) and are assembled with foreign and domestic components.

© 2013 Powers Fasteners, Inc. All Rights Reserved. Power-Stud+ is a Trademark of Powers Fasteners, Inc. For the most current information please visit www.powers.com

Power-Stud+ SD6 (Type 316 Stainless Steel Body)

Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.
7600SD6	1/4" x 1-3/4"	3/4"	100	600
7602SD6	1/4" x 2-1/4"	1-1/4"	100	600
7604SD6	1/4" x 3-1/4"	2-1/4"	100	600
7610SD6	3/8" x 2-1/4"	7/8"	50	300
7612SD6	3/8" x 2-3/4"	1-3/8"	50	300
7613SD6	3/8" x 3"	1-5/8"	50	300
7614SD6	3/8" x 3-1/2"	2-1/8"	50	300
7615SD6	3/8" x 3-3/4"	2-3/8"	50	300
7616SD6	3/8" x 5"	3-5/8"	50	300
7617SD6	3/8" x 7"	5-5/8"	50	300
7620SD6	1/2" x 2-3/4"	1"	50	300
7622SD6	1/2" x 3-3/4"	2"	50	300
7623SD6	1/2" x 4-1/2"	2-3/4"	50	300
7624SD6	1/2" x 5-1/2"	3-3/4"	50	300
7626SD6	1/2" x 7"	5-1/4"	25	100
7630SD6	5/8" x 3-1/2"	1-1/2"	25	100
7632SD6	5/8" x 4-1/2"	2-1/2"	25	100
7633SD6	5/8" x 5"	3"	25	100
7634SD6	5/8" x 6"	4"	25	75
7636SD6	5/8" x 7"	5"	25	75
7638SD6	5/8" x 8-1/2"	6-1/2"	25	50

Installation Accessories

Cat. No.	Description	Box Qty
08466	Adjustable torque wrench with 1/2" square drive (25 to 250 ftlbs.)	1
08280	Hand pump / dust blower	1

Power-Stud+ SD4 and Power-Stud+ SD6 anchors can be domestically manufactured (assembled with foreign and domestic components) and are available for special order only. Call for details.

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design.

The published size includes the diameter and the overall length of the anchor. All anchors are packaged with nuts and washers.

C